9,018 research outputs found

    Exact Charged 2-Body Motion and the Static Balance Condition in Lineal Gravity

    Get PDF
    We find an exact solution to the charged 2-body problem in (1+1)(1+1) dimensional lineal gravity which provides the first example of a relativistic system that generalizes the Majumdar-Papapetrou condition for static balance.Comment: latex,7 pages, 2 figure

    Individual and collective dynamics of self-propelled soft particles

    Get PDF
    Deformable self-propelled particles provide us with one of the most important nonlinear dissipative systems, which are related, for example, to the motion of microorganisms. It is emphasized that this is a subject of localized objects in non-equilibrium open systems. We introduce a coupled set of ordinary differential equations to study various dynamics of individual soft particles due to the nonlinear couplings between migration, spinning and deformation. By introducing interactions among the particles, the collective dynamics and its collapse are also investigated by changing the particle density and the interaction strength. We stress that assemblies of self-propelled particles also exhibit a variety of non-equilibrium localized patterns

    Self-replication and splitting of domain patterns in reaction-diffusion systems with fast inhibitor

    Full text link
    An asymptotic equation of motion for the pattern interface in the domain-forming reaction-diffusion systems is derived. The free boundary problem is reduced to the universal equation of non-local contour dynamics in two dimensions in the parameter region where a pattern is not far from the points of the transverse instabilities of its walls. The contour dynamics is studied numerically for the reaction-diffusion system of the FitzHugh-Nagumo type. It is shown that in the asymptotic limit the transverse instability of the localized domains leads to their splitting and formation of the multidomain pattern rather than fingering and formation of the labyrinthine pattern.Comment: 9 pages (ReVTeX), 5 figures (postscript). To be published in Phys. Rev.

    Exact Relativistic Two-Body Motion in Lineal Gravity

    Get PDF
    We consider the N-body problem in (1+1) dimensional lineal gravity. For 2 point masses (N=2) we obtain an exact solution for the relativistic motion. In the equal mass case we obtain an explicit expression for their proper separation as a function of their mutual proper time. Our solution gives the exact Hamiltonian to infinite order in the gravitational coupling constant.Comment: latex, 11 pages, 2 figures, final version to appear in Phys. Rev. Let

    Exact Solution for the Metric and the Motion of Two Bodies in (1+1) Dimensional Gravity

    Get PDF
    We present the exact solution of two-body motion in (1+1) dimensional dilaton gravity by solving the constraint equations in the canonical formalism. The determining equation of the Hamiltonian is derived in a transcendental form and the Hamiltonian is expressed for the system of two identical particles in terms of the Lambert WW function. The WW function has two real branches which join smoothly onto each other and the Hamiltonian on the principal branch reduces to the Newtonian limit for small coupling constant. On the other branch the Hamiltonian yields a new set of motions which can not be understood as relativistically correcting the Newtonian motion. The explicit trajectory in the phase space (r,p)(r, p) is illustrated for various values of the energy. The analysis is extended to the case of unequal masses. The full expression of metric tensor is given and the consistency between the solution of the metric and the equations of motion is rigorously proved.Comment: 34 pages, LaTeX, 16 figure

    A simple stochastic model for the evolution of protein lengths

    Full text link
    We analyse a simple discrete-time stochastic process for the theoretical modeling of the evolution of protein lengths. At every step of the process a new protein is produced as a modification of one of the proteins already existing and its length is assumed to be random variable which depends only on the length of the originating protein. Thus a Random Recursive Trees (RRT) is produced over the natural integers. If (quasi) scale invariance is assumed, the length distribution in a single history tends to a lognormal form with a specific signature of the deviations from exact gaussianity. Comparison with the very large SIMAP protein database shows good agreement.Comment: 12 pages, 4 figure

    From Labyrinthine Patterns to Spiral Turbulence

    Full text link
    A new mechanism for spiral vortex nucleation in nongradient reaction diffusion systems is proposed. It involves two key ingredients: An Ising-Bloch type front bifurcation and an instability of a planar front to transverse perturbations. Vortex nucleation by this mechanism plays an important role in inducing a transition from labyrinthine patterns to spiral turbulence. PACS numbers: 05.45.+b, 82.20.MjComment: 4 pages uuencoded compressed postscrip
    • 

    corecore